Package: pop.lion (via r-universe)

August 24, 2024

Type Package
Title Models for Simulating Lion Populations
Version 1.0.1
Date 2022-04-06
Author Guillaume Chapron [aut, cre], Matthew Wijers [ctb], Andrew Loveridge [ctb], David Macdonald [ctb]
Maintainer Guillaume Chapron <gchapron@carnivoreconservation.org></gchapron@carnivoreconservation.org>
Description Simulate the dynamic of lion populations using a specific Individual-Based Model (IBM) compiled in C.
License GPL-3
Depends parallel, abind, testthat
NeedsCompilation yes
Encoding UTF-8
Date/Publication 2022-04-08 14:10:02 UTC
Repository https://gchapron.r-universe.dev
RemoteUrl https://github.com/cran/pop.lion
RemoteRef HEAD

RemoteSha d4344a97968d6ff0b900288dad115f32a973104f

Contents

pop.lion-package	. 2
plot_projection	. 2
project	. 4

7

Index

pop.lion-package Lion population models

Description

A package to run simulations of lion populations using an Individual-Based Model compiled in C.

Details

Package:	pop.lion
Type:	Package
Version:	0.2
Date:	2020-04-28
License:	GPL-3

Author(s)

Guillaume Chapron <gchapron@carnivoreconservation.org> with contributions from Matthew Wijers, Andrew Loveridge and David Macdonald.

plot_projection Plot population projections

Description

Plot population projections

Usage

```
plot_projection(projection, title)
```

Arguments

projection	A list obtained after running the function project.
title	A string indicating which variable should be plotted
	"NINDIV", "NPRIDES", "NCOALIS", "NCOALIS_RESIDENT", "NCOALIS_VAGRANT",
	"NPRIDES_RESIDENT", "NPRIDES_VAGRANT", "COALISIZE_RESIDENT", "COALISIZE_VAGRANT",
	"PRIDESIZE_RESIDENT", "PRIDESIZE_VAGRANT", "NFEMALES", "NMALES", "TAKEOVERS",
	"LITTERS", "AGE".

plot_projection

Details

Plot average projections with 95% confidence interval.

Value

No returned value, plot created

Examples

```
oldpar <- par(mfrow = c(1,1))
years = 25
survival <- matrix(1, nrow=180, ncol=2)</pre>
survival[1:12, 1:2] <- 0.97^(1/12)</pre>
survival[13:24, 1:2] <- 0.98^(1/12)</pre>
survival[25:96, 1:2] <- 0.99^(1/12)</pre>
survival[97:108, 1:2] <- 0.98^(1/12)</pre>
survival[109:120, 1:2] <- 0.96^(1/12)</pre>
survival[121:132, 1:2] <- 0.94^(1/12)</pre>
survival[133:144, 1:2] <- 0.92^(1/12)</pre>
survival[145:156, 1:2] <- 0.90^(1/12)</pre>
survival[157:168, 1:2] <- 0.87^(1/12)</pre>
survival[169:180, 1:2] <- 0.83^(1/12)</pre>
litter_distribution <- c(0.10, 0.30, 0.35, 0.20, 0.05)
conflict_age <- array(4*12, dim=c(2), dimnames=list(c("female", "male")))</pre>
conflict_mortality <- array(0, dim=c(12*years, 2), dimnames=list(NULL, c("female", "male")))</pre>
conflict_mortality[24:36,] <- 15.2</pre>
hunting_age <- array(5*12, dim=c(2), dimnames=list(c("female", "male")))</pre>
hunting_mortality <- array(0, dim=c(12*years, 2), dimnames=list(NULL, c("female", "male")))</pre>
hunting_mortality[72:84,"male"] <- 10</pre>
projection <- project(</pre>
years = years,
 runs = 100,
 survival = survival,
 litter_distribution = litter_distribution,
 pop_initial = 5,
 conflict_age = conflict_age,
 conflict_mortality = conflict_mortality,
 hunting_age = hunting_age,
 hunting_mortality = hunting_mortality,
 hunter_error = 0,
 K_{indiv} = 400,
 K_{pride} = 20,
 K_{coali} = 20,
 K_{edged} = 10,
 seed = 1,
 details = FALSE
```

```
)
par(mfrow=c(2,2))
plot_projection(projection, "NINDIV")
plot_projection(projection, "NPRIDES")
plot_projection(projection, "NCOALIS")
plot_projection(projection, "LITTERS")
```

par(oldpar)

project

4

Lion population projections

Description

Run stochastic lion population projections.

Usage

```
project(years,
     runs,
     survival,
     litter_distribution,
     pop_initial,
     conflict_age,
     conflict_mortality,
     hunting_age,
     hunting_mortality,
     hunter_error,
     K_indiv,
     K_pride,
     K_coali,
     K_edged,
     seed,
     details)
```

Arguments

years	A number: number of years to simulate the population.	
runs	A number: number of times (or Monte Carlo runs) to simulate the population.	
survival	A matrix: average monthly survival for each sex.	
litter_distribution		
	A vector: probability distribution of litter sizes (1-5 cubs) in the population.	
pop_initial	A number: number of prides (and coalitions). A simulation starts with an equal number of prides and coalitions.	
conflict_age	A vector: the minimum age in months at which lions can be killed by conflict for females and males.	

project

conflict_mortality		
	An array: mortality added at the edge by conflict for every month of the simulation and for females and males. Expressed in percentage, a value of 15.2 will be understood by the model as 15.2 per cent. Values can be double. The array has $12 *$ years rows.	
hunting_age	A vector: the minimum age in months at which lions can be killed by trophy hunting for females and males.	
hunting_mortality		
	An array: mortality added at the edge by trophy hunting for every month of the simulation and for females and males. Expressed in number of individuals, a value of 15 will be understood by the model as 15 killed every month. A value of 0.5 will be understood as 6 lions killed per year. The array has 12 * years rows.	
hunter_error	A number: hunter error.	
K_indiv	A number: maximum number of individuals in the population.	
K_pride	A number: maximum number of prides in the population.	
K_coali	A number: maximum number of coalitions in the population.	
K_edged	A number: number of prides in the population that are located at the edge of the reserve and therefore vulnerabe to hunting and poaching.	
seed	(optional) A number: seed of the random number generator.	
details	(optional) A boolean: indicate whether individual events are exported. This can generate large simulation objects.	

Details

Run stochastic lion population projections with an Individual-Based Model (IBM) compiled in C.

Value

runs	a 3-dimensional array of numbers of individuals with dimension c(years, statis-
	tics, runs)
individuals	a 2-dimensional array of individuals events
parameters	a list of parameters of the projection

Examples

```
years = 25
```

```
survival <- matrix(1, nrow=180, ncol=2)
survival[1:12, 1:2] <- 0.97^(1/12)
survival[13:24, 1:2] <- 0.98^(1/12)
survival[25:96, 1:2] <- 0.99^(1/12)
survival[97:108, 1:2] <- 0.98^(1/12)
survival[109:120, 1:2] <- 0.96^(1/12)
survival[121:132, 1:2] <- 0.94^(1/12)
survival[133:144, 1:2] <- 0.92^(1/12)
survival[145:156, 1:2] <- 0.90^(1/12)</pre>
```

```
survival[157:168, 1:2] <- 0.87^(1/12)</pre>
survival[169:180, 1:2] <- 0.83^(1/12)</pre>
litter_distribution <- c(0.10, 0.30, 0.35, 0.20, 0.05)
conflict_age <- array(4*12, dim=c(2), dimnames=list(c("female", "male")))</pre>
conflict_mortality <- array(0, dim=c(12*years, 2), dimnames=list(NULL, c("female", "male")))</pre>
conflict_mortality[24:36,] <- 15.2</pre>
hunting_age <- array(5*12, dim=c(2), dimnames=list(c("female", "male")))</pre>
hunting_mortality <- array(0, dim=c(12*years, 2), dimnames=list(NULL, c("female", "male")))</pre>
hunting_mortality[72:84,"male"] <- 10</pre>
projection <- project(</pre>
 years = years,
 runs = 100,
 survival = survival,
 litter_distribution = litter_distribution,
 pop_initial = 5,
 conflict_age = conflict_age,
 conflict_mortality = conflict_mortality,
 hunting_age = hunting_age,
 hunting_mortality = hunting_mortality,
 hunter_error = 0,
 K_indiv = 400,
 K_{pride} = 20,
 K_{coali} = 20,
 K_{edged} = 10,
 seed = 1,
 details = FALSE
)
```

```
# Population size at the end of the simulation:
apply(projection$runs[,"NINDIV",], 1, mean)[12*years+1]
```

Index

C_montecarlo (project), 4

plot_projection, 2
pop.lion(pop.lion-package), 2
pop.lion-package, 2
project, 4